Preparation of solutions

- Type of Concentrations

1- Molarity [M]
2- Normality [N]
3- Molality [m]
4- Part per Million [ppm]
5- Percentage [\%]

Molarity: Number of moles in one liter of solution.

قانون المولارية للمواد الصلبة

Normality : Number of gramic equivalent in one liter of solution.

M.Wt

eq.wt of acid =
No. of \mathbf{H}^{+}

$$
\mathrm{HCl} \longrightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

36.5

$$
\begin{array}{r}
\text { eq.wt of } \mathbf{H C l}=36.5 \\
135.5
\end{array}
$$

$\mathbf{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathbf{2} \mathbf{H}^{+}+\mathbf{S O}_{4}{ }^{-2}$
98
eq.wt of $\mathrm{H}_{2} \mathrm{SO}_{4}=\square=49$
2

$$
M=2 N
$$

$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}^{2} \mathrm{COO}^{-}+\mathrm{H}^{+}$

60
eq.wt of $\mathrm{CH}_{3} \mathrm{COOH}=\square=60$
1

$$
\mathrm{M}=\mathrm{N}
$$

Q/ How many Normality for $0.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$M=2 N$
$0.3=2 N$
$N=$

M.Wt
eq.wt of basic $=$

$$
\text { No. of } \mathrm{OH}^{-}
$$

$\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

40

eq,wt of $\mathrm{Ca}(\mathrm{OH})_{2}=\frac{\text { M. Wt }}{\text { No. of } \mathrm{OH}^{-}}=\frac{74}{2}=\frac{37}{\square}$
$\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{+2}+2 \mathrm{OH}^{-}$

M.Wt

eq.wt of Salt =
No. of Metal x equivalent of Metal

58.5

$\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
106
$\begin{gathered}\text { eq.wt of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\ 231216\end{gathered}=\begin{aligned} & 2 \times 1\end{aligned}$
Q/ Prepare of 0.1 N Sodium Carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 250 ml ?
At. wt for $\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$

Solution:

$0.1 \times 53 \times 250$

$\mathbf{W t}=$
1000
$=1.325 \mathrm{gm}$

Standard Solution Properties

1- Non hydroscopic
2- Non Evaporated and Poising
3- High Molecular weight
4- Not effect on air, heat, light
*

قانون المولارية للمواد اللمائلة
$\mathbf{S p}=$ Specific gravity
$\%=$ Percentage
$\mathrm{N}=\frac{\text { Sp. } \mathrm{x} \text { \% } \mathrm{x} 1000}{\text { eq. } \mathrm{Wt}}$

قانون النورمـالية للمواد اللسائلة

Dilution rule

Q/ Prepare 0.1 N Sulfuric acid $\mathrm{H}_{2} \mathrm{SO} 4$ in 250 ml ?
At wt. for $\mathrm{H}=1, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{Sp}=1.09, \%=98$
Solution:
$\mathrm{N}=\frac{\text { Sp. } \mathrm{X} \% \times 1000}{\text { eq.wt }}$
$=\frac{1.09 \times 19.98 \times 1000}{49}$
$=21.8$
$\mathbf{N}_{1} \mathbf{V}_{1}=\mathbf{N}_{2} \mathbf{V}_{\mathbf{2}}$
$21.8 \times V_{1}=0.1 \times 250$

0.1×250

eq.wt	$=\frac{\text { M.wt }}{2}$
	$=\frac{98}{2}$
	$=49$

$\mathrm{V} 1=\square=1.147 \mathrm{ml}$
21.8

Q/ How many Milliliter of $\mathbf{2 N}$ of $\mathbf{H C l}$ you take to prepare 0.1 N in volumetric flask of 500 ml ?

Solution :
$\mathrm{N}_{1} \mathrm{~V}_{\mathbf{1}}=\mathrm{N}_{2} \mathrm{~V}_{\mathbf{2}}$
$2 \times V_{1}=0.1 \times 500$

0.1×500

$\mathrm{V}_{1}=\square=\mathbf{2 5} \mathrm{ml}$

2

Q/ Prepare 0.5 M of Sodium hydroxide NaOH in volumetric flask of half liter?

Titration

Titration is the slow addition of one solution of a known concentration to a known volume of another solution of unknown concentration until the reaction reaches neutralization, which is often indicated by a color change. Titration is a technique to determine the concentration of an unknown solution.
*Acid-Base Titration
Acid-Base Titration are usually used to find the amount of known acidic or basic substance through acid base reactions. The analyte (titrand) is the solution with an unknown molarity. The reagent (titrant) is the solution with a known molarity that will react with the analyte.

Indicators

Indicators are substances whose solutions change color due to changes in $\mathbf{p H}$. These are called acid - base indicators but their conjugate base or acid forms have different colors due to differences in the absorption spectra.

Common Indicators :

